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To initiate X-Chromosome inactivation (XCI), the long noncoding RNA Xist mediates chromosome-wide gene silencing of

one X Chromosome in female mammals to equalize gene dosage between the sexes. The efficiency of gene silencing is highly

variable across genes, with some genes even escaping XCI in somatic cells. A gene’s susceptibility to Xist-mediated silencing

appears to be determined by a complex interplay of epigenetic and genomic features; however, the underlying rules remain

poorly understood. We have quantified chromosome-wide gene silencing kinetics at the level of the nascent transcriptome

using allele-specific Precision nuclear Run-On sequencing (PRO-seq). We have developed a Random Forest machine-learn-

ing model that can predict the measured silencing dynamics based on a large set of epigenetic and genomic features and

tested its predictive power experimentally. The genomic distance to the Xist locus, followed by gene density and distance

to LINE elements, are the prime determinants of the speed of gene silencing. Moreover, we find two distinct gene classes

associated with different silencing pathways: a class that requires Xist-repeat A for silencing, which is known to activate

the SPEN pathway, and a second class in which genes are premarked by Polycomb complexes and tend to rely on the

B repeat in Xist for silencing, known to recruit Polycomb complexes during XCI. Moreover, a series of features associated

with active transcriptional elongation and chromatin 3D structure are enriched at rapidly silenced genes. Our machine-

learning approach can thus uncover the complex combinatorial rules underlying gene silencing during X inactivation.

[Supplemental material is available for this article.]

X-Chromosome inactivation (XCI) is a developmental process in
mammals that ensures equal gene dosage of X-linked genes be-
tween XX and XY individuals by transcriptional inactivation of
one of the two X Chromosomes in female cells. In placental mam-
mals XCI is triggered by the long noncoding RNA (lncRNA) Xist,
which is up-regulated in amonoallelic fashion and coats the future
inactive X Chromosome in cis, leading to the recruitment of sever-
al factors involved in transcriptional inactivation and eventually
converting the entire X Chromosome into silent heterochromatin
(Escamilla-Del-Arenal et al. 2011; Gendrel andHeard 2014; Galupa
and Heard 2015).

Early events following Xist coating include the depletion
of RNA polymerase II (RNAPII) from the Xist RNA domain and
loss of active histone marks (Chaumeil et al. 2002, 2006) as
well as gain of repressive chromatin modifications, such as
H2AK119ub1 and H3K27me3, deposited by the Polycomb repres-
sive complexes (PRC) 1 and 2, respectively (Plath et al. 2003, 2004;
Silva et al. 2003; de Napoles et al. 2004). Subsequently, additional
chromatin modifications are gained such as the histone variant
macroH2A and DNA methylation of gene promoters (Escamilla-
Del-Arenal et al. 2011). In recent years, progress has been made
in identifying proteins that mediate Xist’s functions as well as
the domains within the Xist RNA that recruit these proteins. Xist
contains multiple conserved repeats, among which the A repeat
mediates gene silencing through activation of SPEN and other fac-
tors including RBM15 (Chu et al. 2015; McHugh et al. 2015), and
the B repeat recruits PRC indirectly through HNRNPK (Wutz et al.
2002; Brockdorff 2017; Pintacuda et al. 2017). The dynamics of
Xist-mediated silencing are highly variable across genes (Chow
et al. 2010; Borensztein et al. 2017; Żylicz et al. 2019), with a subset
of so-called escapees remaining active even in somatic cells
(Berletch et al. 2011). However, the determinants of susceptibility
to XCI remain poorly understood. Because XCI is a multistep pro-
cess, local interference with any step, such asXist coating or access
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to the silencing machinery of one or several silencing pathways,
could delay or prevent silencing of a certain gene. Defining the fea-
tures that underlie differential susceptibility to XCI remains an im-
portant question, particularly because genes that are not fully
silenced are implicated in diseases, such as autoimmune syn-
dromes (Bianchi et al. 2012).

Xist RNA spreading occurs by proximity transfer to sites close
to the Xist locus genomically or in 3D space (“Xist entry sites”)
(Engreitz et al. 2013). From there, Xist has been proposed to
move first into gene-dense regions and then spread to intergenic
domains of the X Chromosome (Engreitz et al. 2013; Simon et al.
2013). In differentiated cells,Xist covers the entire XChromosome
but is reduced at escape genes (Engreitz et al. 2013; Simon et al.
2013). Xist coating is positively correlated with gene density and
with PRC2 enrichment and negatively correlated with the density
of LINEelements (Engreitz et al. 2013; Simonet al. 2013). Similarly,
gene silencing tends to be slower for genes further from theXist lo-
cus (Marks et al. 2015; Borensztein et al. 2017) and from LINE ele-
ments (Chow et al. 2010; Loda et al. 2017). Moreover, efficiently
silenced genes tend to be enriched for Polycomb complexes
(RING1B, H3K27me3) and depleted for CTCF and active marks
such as H3K4me3 and H3K27ac prior to Xist-induced silencing
(Kelsey et al. 2015; Loda et al. 2017). Thus, a variety of genetic
and epigenetic features have been implicated in controlling gene-
specific silencing efficiency. However, none of these features alone
can predict whether and towhat extent a genewill be silenced dur-
ing XCI, and the associations with measured silencing efficiencies
are generally weak. Because no predictive pattern of features has so
far been identified, the susceptibility of genes to Xist-mediated si-
lencing is likely to be controlled by a complex combination of dif-
ferent features.

In this study we set out to identify the genetic and chromatin
features that predispose genes on the X Chromosome to be effi-
ciently silenced or escape XCI. We measured chromosome-wide
silencing dynamics of X-linked genes following induction of Xist
expression, using allele-specific Precision nuclear Run-On se-
quencing (PRO-seq) (Kwak et al. 2013). We then trained two Ran-
dom Forest machine-learning models to predict from 77 genomic
and epigenetic features (1) whether a gene is subject toXCI, and (2)
whether it will be silenced with fast or slow kinetics. Through for-
est-guided gene clustering, we identified feature sets that deter-
mine the silencing dynamics of subgroups of genes, indicating
that variable silencing efficiencies might be associated with dis-
tinct silencing pathways. We have thus developed a framework
to comprehensively assess the relative contribution of genetic
and epigenetic factors to transcriptional silencing of the X Chro-
mosome in an unbiased and quantitative manner.

Results

Quantification of gene-specific silencing dynamics by PRO-seq

Toquantify gene silencingdynamicsduringXCI ina chromosome-
widemanner, we performed allele-specific PRO-seq during ectopic
Xist induction in female murine embryonic stem cells (mESCs).
Using an inducible system allowed us to overcome the asynchro-
nous nature of XCI, whichnormally limits the temporal resolution
of population measurements in differentiating mESCs, the classic
model system to study XCI (Chow et al. 2010).We used the female
TX1072 mESC line (Schulz et al. 2014), which was derived from a
cross between two different mouse strains (C57BL/6 × CAST/EiJ)
and in which Xist up-regulation from the endogenous locus on

the B6 XChromosome can be induced by doxycycline (Dox) treat-
ment in undifferentiated cells. For a direct readout of gene silenc-
ing, we measured the nascent transcriptome by allele-specific
PRO-seq (Kwak et al. 2013) at different time points up to 24 h of
Dox treatment (Fig. 1A). Xist started to be up-regulated from the
B6 chromosome about 1 h after Dox treatment and reached a pla-
teau after 4 h (Fig. 1B,C; Supplemental Fig. S1), whereas global ex-
pression of the B6XChromosomewas gradually reduced over time
due to X inactivation, starting at 4 h of treatment (Fig. 1D).

To quantify silencing dynamics, we fitted an exponential de-
cay function to each gene and estimated gene-specific silencing
half-times, that is, the time point when transcription on the B6
X Chromosome is reduced by 50% compared to the uninduced
control (Fig. 1E and examples in 1F). After several filtering steps,
we had estimated reliable half-times for 280 genes, which were
used for all subsequent analyses and ranged from several hours
up to several days (Fig. 1G; Supplemental Tables S1, S2).

Silencing dynamics are comparable in vitro and in vivo

To ensure that the relative silencing dynamics across genes, when
XCI is induced in undifferentiatedmESCs, are comparable to those
in the cellular context where XCI occurs endogenously, we gener-
ated two additional data sets, in which mRNA-seq was performed
at different time points of Dox treatment in undifferentiated and
differentiating mESCs (Fig. 2A). The computed half-times were
comparable between these two data sets (Pearson correlation
coefficient: r=0.75) (Fig. 2B), suggesting that the differentiation
process only has aminor impact on relative gene silencing dynam-
ics. When comparing half-times estimated from the two different
data types (mRNA-seq vs. PRO-seq), correlation was generally a
bit lower, independent of the cellular context (Pearson correlation
coefficient r=0.52 and r=0.51) (Fig. 2C,D),whichwouldbe expect-
ed given that PRO-seqmeasures the direct transcription dynamics,
whereas mRNA-seq kinetics are modulated by transcription, RNA-
processing, and degradation. We also compared the estimated
half-times to aprevious study (Marks et al. 2015) thathadusedadif-
ferent, Dox-independent strategy to make XCI nonrandom by in-
serting a stop-cassette in Xist’s repressive antisense transcript
Tsix. The silencing classes defined in Marks et al. (2015) (early, in-
termediate, late, escapee) are ingoodagreementwith thehalf-times
estimated from the PRO-seq data (Fig. 2E), suggesting that Dox-
induced XCI recapitulates endogenous gene silencing dynamics.

Finally, we compared our Xist-induced gene silencing half-
times in mESCs to the dynamics of (imprinted) XCI measured in
preimplantation mouse embryos in vivo through single-cell
RNA-seq (Borensztein et al. 2017). The gene classification in that
study (early: 16-cell stage; intermediate: 32-cell stage; late: blasto-
cyst stage or escapee) was once more in good agreement with the
silencing half-times estimated from the PRO-seq data (Fig. 2F).
Based on the PRO-seq derived silencing half-times, we classified
all genes according to whether they are subject to XCI or escape
(Figs. 1G, 2G, silenced/not silenced) andwhether they are silenced
with slow or fast kinetics (Figs. 1G, 2G, early/late). Genes with in-
termediate half-times between the classes were excluded from the
analysis (see gap between groups in Fig. 1G). The resulting classes
largely agree with those previously defined in differentiating
mESCs and in preimplantation embryos (compare Fig. 2G with
Fig. 2E,F). Moreover, the “not silenced” class contains 37 of 50
(74%) known escapees annotated from different cell types and is
strongly enriched for escapees compared to the “silenced” class
when considering only (high confidence) escapees identified in
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at least two different studies (e.g., Ddx3x, Taf1, Pdbc1, Kdm6a,
Usp9x, Hcfc1, Hdac6, Mgmt1, Ftx, Nkap, and Uba1, odd ratio = 6.7,
P=2.6×10−5, Fisher’s exact test) (Supplemental Table S2; Yang
et al. 2010; Berletch et al. 2011; Splinter et al. 2011; Calabrese
et al. 2012; Wu et al. 2014; Marks et al. 2015; Andergassen et al.
2017).

Identifying determinants of gene silencing dynamics

with Random Forest modeling

We noted that genes close to the Xist locus tended to be silenced
earlier than distal genes (Fig. 2H), in agreement with a previous
study (Marks et al. 2015). However, many genes did not follow
this trend. To uncover additional factors that potentially deter-
mine the susceptibility to Xist-mediated silencing, we developed
a machine-learning model to predict silencing dynamics based
on genomic and epigenetic features.

We collected 138 publicly available high-throughput data
sets (ChIP-seq and bisulfite-seq) measuring chromatin modifica-
tions and DNA-binding factors, mostly in male mESCs. Because
these data sets had been generated in undifferentiated mESCs,
they correspond to the chromatin state before Xist induction.
After stringent filtering on data quality, we computed the enrich-
ment for 59 of these epigenomic features at promoters or gene
body regions as appropriate (Table 1; Supplemental Text S1). In ad-

dition, we included a series of genomic and structural features,
such as gene density, the frequency of 3D chromatin interactions
with different genomic elements, and the linear distance to other
genomic features, such as the distance to the Xist locus, the next
TAD boundary, lamin-associated domain (LAD), or full-length
LINE element (Table 1; Supplemental Text S1).

A linear model to predict a gene’s susceptibility to Xist-medi-
ated silencing from the collected epigenetic and genomic features
had little predictive power. This indicates that no single linear
combination of features or rules could be defined to discriminate,
for example, silenced from not silenced genes. The different func-
tional domains of Xist might recruit distinct silencing complexes
(e.g., PRC1 and SPEN/HDAC3), and susceptibility to each silencing
pathway might be determined by distinct feature patterns. We ex-
pected to identify such feature patterns from our data set, because
genes that require the Xist A repeat for silencing, which activates
SPEN, exhibit longer silencing half-times compared to A repeat–
independent genes that might be preferentially targeted by
Polycomb complexes (Kolmogorov-Smirnov [KS] test, P=
2.2×10−6) (Fig. 2I; Sakata et al. 2017).

To identify combinatorial rule sets that could predict silenc-
ing susceptibility, we used Random Forest, a nonparametric ma-
chine-learning method that combines an ensemble of single
classification trees, which successively split the feature input space
in a nonlinear fashion, to predict the value of a discrete binary
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Figure 1. Measuring gene silencing dynamics. (A) Schematic of the experimental setup used in B–F. Using a hybrid femalemESC line (B6 ×CAST) carrying
a Dox-responsive promoter in front of the endogenous Xist gene on the B6 allele, RNAPII activity was measured by allele-specific PRO-seq over a 24-h time
course of Dox treatment. (B) Strand-specific read density at the Tsix-Xist locus. Plus-strand is shown in red,minus strand in blue; the y-axis indicates reads per
million. (C) Xist expression from the two alleles. (D) Distribution of the fraction of B6 reads for autosomal and X-linked genes over time. (E,F) Schematic (E)
and three examples (F) of how gene silencing half-times (in parentheses) were estimated from the allele-specific PRO-seq time course data through fitting
an exponential decay function. (G) Distribution of estimated half-times for 280 X-linked genes with an assigned active transcription start site (TSS). The half-
time ranges used to define the model classes and the number of genes falling in each category are indicated.
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variable (Fig. 3A,B). We built two binary classification models to
predict from a total of 77 epigenetic and genomic features whether
a gene would be silenced or not (XCI/escape model), and whether
it would be silenced early or late (silencing dynamicsmodel) using
the classification described above (Table 1; Fig. 1G). The half-time
thresholds were selected such that they maximize the model clas-
sification accuracy (Supplemental Table S3; Supplemental Text
S2). The XCI/escape model would identify combinations of fac-
tors, that are important for silencing in general, and the silencing
dynamics model would find those that influence the kinetics of
gene silencing.

The two Random Forest models predict gene silencing dy-
namics with error rates of 28%–29% meaning that 71%–72% of
genes are classified correctly. We assessed the individual contribu-
tion of each feature to the classification accuracy via Random
Forest variable importance analysis for each class in the two mod-
els by the Mean Decrease in Accuracy (MDA), which indicates the

importance of the feature for the classification performance (Fig. 4;
Supplemental Fig. S2; Supplemental Text S2). We also trained our
models on a set of only 10 (XCI/escapemodel) and 8 (silencing dy-
namics model) top features, which greatly improved the predic-
tion error rate to 22.5% and 21.5%, respectively (Supplemental
Fig. S3). The most important feature associated with silencing in
both models was close genomic proximity of a gene’s transcrip-
tional start site (TSS) to the Xist locus (MDA 15%–16% in the
XCI/escapemodel,MDA14%–22% in the silencing dynamicmod-
el) (Fig. 4; Supplemental Figs. S2, S4, S5). Also a close proximity to
LINE elements, low gene density, and enrichment for PRC1
(RING1B, H2AK119ub1, RYBP) and PRC2 (EZH2, H3K27me3) are
associated with (early-) silenced genes in both models, with
PRC1 playing a more prominent role in the XCI/escape model
(MDA 8% for the not silenced class). (Early-) silenced genes are en-
riched for histone deacetylases (HDAC), involved in gene repres-
sion (MDA 1.6%–2.3% for the early-silenced class and 3.1%–
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Figure 2. Comparison of PRO-seq-based silencing half-times to other data sets. (A) Comparison of PRO-seq (undifferentiated mESC, upper) and
mRNA-seq data (undifferentiated mESCs, middle; differentiated mESCs, lower). Fraction of B6 reads are shown for all genes covered in all three data
sets, ordered by genomic position. (B–D) Comparison of estimated half-times (in days) between the data sets shown in A (replicate B only for mRNA-
seq undiff.) with fitted regression lines (red). Pearson correlation coefficients are indicated. (E–G) Distribution of half-times within silencing classes defined
previously in mESCs (E) (Marks et al. 2015), in preimplantation mouse embryos (F) (Borensztein et al. 2017), and the classes used for Random Forest mod-
eling (G): (blue) XCI/escapemodel; (red) silencing dynamicsmodel. (H) Estimated half-times (black circles) for all genes in the PRO-seq data set along the X
Chromosome. A fitted smooth curve of the half-times is displayed as a blue line, and the Xist locus is marked with a gray line. (I) Cumulative distribution of
half-times of genes silenced (independent, light gray) or not silenced (dependent, dark gray) by Xist lacking the repeat A element (Sakata et al. 2017).
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Table 1. Epigenetic and genomic features used for modeling

Epigenetic features Genomic features

Sequence-
specific
transcription
factors

Structural
proteins

General
transcription
regulators

Chromatin
modifications
(activation)

Chromatin
modifications
(repression) Others Genomic elements 3D structure

MYC,
ESRRB,
KLF4,
MAFK,
NANOG,
MYCN,
POU5F1,
SOX2,
TCF3,
TCFCP2L1,
YY1, ZNF384

CTCF,
SMC1,
SMC3

CDK9, E2F1,
HCFC1, MAX,
MED1, MED12,
NIPBL, RNAPII
(S2P, S5P, S7P,
unphosphorylated),
SIN3A, TAF1,
TAF3, TBP

H3K27ac,
H3K9ac,
H3K4me1,
H3K4me3,
H3K36me3,
H3K79me2,
KMT2B/MLL2

H2AK119ub1,
H3K27me3, RING1B
(PRC1), CBX7
(PRC1) RYBP
(PRC1), KMT6/EZH2
(PRC2), SUZ12
(PRC2), KDM1A/
LSD1, KDM2A,
KDM2B, HDAC1,
HDAC2, HDAC3,
DNA methylation
(BS-seq), 5fC
(MeDIP), 5hmC
(MeDIP), TET1

H2A.Z,
OGT,
BRG1,
CBX3

Distance to the
Xist locus, TAD
borders, LADs,
full-length LINEs
overlap with Xist
entry sites, LADs,
CpG islands
full-length LINE
density (700 kb)
gene density (1 Mb)
CpG content

Number Hi-C all,
strength Hi-C all,
number Hi-C
promoter, strength
Hi-C promoter,
strength Hi-C Xist,
number HiCap
promoter, number
HiCap enhancer,
number HiCap all

A B

C

Figure 3. Schematic overview of our modeling approach. (A) Epigenetic and genomic input data for the model are collected, and feature matrices are
computed for all X-linked genes with estimated half-times (labeled) and without estimated half-times (unlabeled). (B) After model training, the XCI/escape
model is then used to predict the silencing class of all unlabeled X-linked genes given the same set of input features. The predictions are validated by com-
paring them to measured half-times from undifferentiated mRNA-seq data, with pyrosequencing experiments (few selected genes) and with measured
silencing dynamics of genes in six transgenic mESCs clones. (C) A forest-guided clustering approach was developed for model interpretation. A proximity
matrix between genes is computed from the trained model and converted into a distance matrix. Clusters of genes and their most significant associated
features are displayed as a heatmap.
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3.8% for the not silenced class) and depleted for features associated
with active transcription, such as H3K27ac and RNAPII S5P (MDA
1.8%/1.7% for the silenced class) and the general transcription fac-
tor TAF1 (MDA 6.3% for the not silenced class). Moreover, se-
quence-specific transcription factors, such as ESRRB (MDA 2.2%
for the not silenced class) and SOX2 (MDA 1.6%–5.5% in the
silencing dynamics model) contribute to model performance.
Among the top features specific for the XCI/escape model we
found binding of TET1, implicated in DNA demethylation,
enriched at silenced genes (MDA 2.1% for the not silenced class).
In the silencing dynamicsmodel, in contrast, several features relat-
ed to 3D chromosome organization seem to be important.
Although genes located in close proximity to a TAD border tend
to be silenced late, genes that are close to a LAD or highly con-
nected to other genomic regions based on Hi-C/HiCap data tend
to be silenced earlier. In summary, we have identified different fea-
ture sets that appear to influence whether or not a gene is subject
to XCI and also whether silencing occurs with slow or fast
dynamics.

Forest-guided clustering of X-linked genes uncovers

combinatorial rules of gene silencing

The preceding variable importance analysis pinpoints the individ-
ual contribution of each feature to the classification problem but
cannot identify the role of correlated features and of feature com-
binations associated with different silencing pathways, which ulti-
mately determine the silencing class of each gene. We therefore
implemented a forest-guided clustering approach to stratify the
genes into subgroups according to different combinations of rules.
We used the proximity between genes within the Random Forest
model to group genes that are regulated by the same set of genomic
and epigenetic features. The number of clusters is chosen such that
each cluster has a low degree of class mixture (containing mainly
genes from one class and none or only a few genes from the other

class) while maintaining a small number of clusters in total (Fig.
3C; Supplemental Fig. S6; Supplemental Text S3). The results are
visualized in a heatmap showing the genes (columns), grouped
by cluster, and a subset of features (rows) selected based on wheth-
er they were significantly different across clusters (P-value from an
ANOVA test) (Figs. 5A, 6A).

For the XCI/escapemodel three clusters are found (Fig. 5A,B).
Genes in clusters 1 and 2 are mainly predicted as silenced, and
those in cluster 3 as not silenced (Fig. 5C). Genes tend to escape
when they are far from the Xist locus, from LINE elements, and
from LADs; they are found in gene-dense regions and are enriched
for transcription elongation marks such as RNAPII S2P and
H3K36me3 and never overlap with LADs. A cluster of silenced
genes (cluster 1) is already marked by a repressive chromatin state
(PRC1/2, HDAC1) and bound by TET1, whereas genes in the other
silenced cluster (cluster 2) are depleted for those marks (Fig. 5A;
Supplemental Figs. S7, S8).

To test whether these two clusters might be associated with
different silencing pathways, we analyzed how they were affected
in Xist mutants lacking either the A or the B and C repeats
(Supplemental Text S4). We used data from a previous study that
had analyzed both mutations in mESCs (Bousard et al. 2018) and
from another study that had characterized the A-repeat mutant
in trophoblasts in vivo (Sakata et al. 2017). Cluster 2 was enriched
for genes that could still be silenced by a BC-repeat mutant com-
pared to cluster 1 (repeat BC independent, odd ratio = 1.6, P=
0.19, Fisher’s exact test), whereas cluster 1 was enriched for genes
still silenced in the A-repeat mutant in either data set (mESC
data: odd ratio = 2.3, P=0.09 and trophoblast data: odds ratio =
2.76, P=0.003, Fisher’s exact test) (Fig. 5D; Supplemental Fig. S9).
These findings are consistent with the idea that genes that require
Polycomb for silencing (repeat BC dependent) are already pre-
marked by PRC1/2 and the associated histone modifications (clus-
ter 1), in contrast togenes that require thatA repeat,whichactivates
the SPEN/HDAC3 silencing pathway (cluster 2).

Figure 4. Feature importance for XCI/escape and silencing dynamics model. For each model, features are ranked class-wise according to their impor-
tance for the classification, quantified by the Mean Decrease in Accuracy (MDA) (Methods). (∗) The top features of each class (10 for XCI/escape model;
8 for silencing dynamics model) that are used to build the final model. For more details, see Supplemental Figure S3. Similar results are obtained from the
XCI/escape model trained on undifferentiated mRNA-seq data (Supplemental Fig. S20; Supplemental Text S8).

Barros de Andrade e Sousa et al.

1092 Genome Research
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.245027.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.245027.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.245027.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.245027.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.245027.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.245027.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.245027.118/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.245027.118/-/DC1


In the next step, we investigated the factors that would distin-
guish early- and late-silenced genes (silencing dynamics model).
Again, the forest-guided clustering approach produced two early-
silenced clusters (1, 2) with lower half-times and one late-silenced
cluster (3) with higher half-times (Fig. 6A–C). Again, one early-
silenced cluster (1) is premarked by Polycomb repressed chromatin
(H2AK119ub1, RING1B, EZH2, SUZ12, H3K27me3) and also
H3K4me1. The other early-silenced cluster (2) is mainly character-
ized by a preferential location of genes in LINE-dense regions, an
enrichment of features related to transcriptional elongation,
such as E2F1 subunit and H3K79me2 and the transcription factor
YY1. Genes in both early-silenced clusters tend to be far away from
TAD borders, to overlap with Xist entry sites, and to exhibit strong
3D contacts with theXist locus. The late-silenced genes in cluster 3
are mainly characterized by genomic features; they are located in
gene-dense regions, far from the Xist locus, from LINE elements,
and from LADs (Fig. 6A; Supplemental Figs. S10, S11). We again

analyzed the repeat A and repeat BC dependency in the two
early-silenced clusters. Again, the Polycomb premarked cluster 1
tends to be enriched for repeat A–independent genes, albeit this ef-
fect was not statistically significant, and no difference was found
for repeat BC dependent genes (Fig. 6D; Supplemental Fig. S9).

Experimental testing of model predictions

To validate our machine-learning model, we used the trained
XCI/escape Random Forest model to predict the silencing class
for X-Chromosomal genes that had not been measured in the
PRO-seq experiment owing to insufficient coverage and had there-
fore not been used for model training (Fig. 3B; Supplemental Table
S4). We performed an independent Dox induction time course ex-
periment and used pyrosequencing to assess the allele-specific ex-
pression of six genes predicted to be silenced (Fig. 7A, top) and five
genes predicted to be not silenced (Fig. 7A, bottom). The half-times

A B

Figure 5. Classification rules for the XCI/escape model. (A) Results from the forest-guided clustering of the XCI/escape model visualized as a heatmap.
Columns indicate the genes grouped by cluster; rows correspond to features with significant differences among clusters (ANOVA test). (§) The top 10most
significant features from the ANOVA test. Distributions of features in each cluster are shown in the box plots next to the heatmap, except for the feature
"overlap LADs," where the number of genes in each category is shown. (B) Schematic view of the feature combinations promoting gene silencing (clusters 1
and 2) or escape (cluster 3). (C) Silencing half-time distribution in each cluster. (D) Proportion of genes in each cluster that undergo silencing in mouse
trophoblasts, independent or dependent of the Xist-repeat A element (Sakata et al. 2017): (repeat A–dependent genes) genes with abrogated silencing
in Xist-repeat A-mutant cells; (repeat A–independent genes) genes that still undergo silencing in the same cells; (not covered) our genes that were not
covered in that data set. The numbers in each box indicate the number of genes that fall into each category. Similar results are obtained from the XCI/
escape model trained on undifferentiated mRNA-seq data (Supplemental Fig. S20; Supplemental Text S8).
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of the silenced genes ranged from 0.45 to 0.87 d, and those of the
not silenced genes lay between 0.99 and 3.01 d. The differencewas
highly significant (P=0.0043, Wilcoxon rank-sum test) (Fig. 7B)
and the half-time of all silenced genes fell in the silenced category
(<0.9 d) (Fig. 1G), and three of five not silenced genes also fell in
the respective category (>1.6 d) (Fig. 1G). To further validate the
model, we compared all model predictions to the silencing
half-times estimated from the mRNA-seq time course in undif-
ferentiated mESCs (Fig. 2A, replicate A). Genes predicted as not
silenced exhibited much longer silencing half-times than genes
predicted as silenced (P=1.7×10−5, Wilcoxon rank-sum test)
(Fig. 7C). Genes that have not previously been reported as
escapees, but are either measured or predicted from the PRO-seq
model to be not silenced and are also measured as not silenced in
the mRNA-seq data, are potentially novel escape genes, such as
B630019k06Rik, Porcn, Ssr4,Gm14820, and Ppp1r3f (Supplemental
Tables S2, S4).

We next tested whether the model could predict silencing
susceptibility to Xist transgenes located on an autosome. We
used published allele-specific mRNA-seq data for a series of
mESC clones that had integrated doxycycline-inducibleXist trans-
genes in different locations on the X Chromosome and on
Chromosome 12 (Supplemental Table S5; Loda et al. 2017). The
cells were trisomic for Chromosome 12 such that silencing of
one copy should not affect cell viability. We adapted the model
feature “distance to Xist” to account for the different locations of
the transgene and calculated the fraction of genes predicted to
be silenced by our model within all genes that were silenced, for
eachXist transgene (Fig. 7D, red lines). These values varied consid-
erably between clones depending on the size of the chromosomes
and the location of the transgene. For five of six clones, the per-
centage predicted to be silenced was significantly higher than ex-
pected for a random sample, as estimated through a bootstrapping
approach (Fig. 7D, compare red line to background distribution;

A B

Figure 6. Classification rules for the silencing dynamicsmodel. (A) Results from the forest-guided clustering of the silencing dynamicsmodel visualized as
a heatmap. Columns indicate the genes grouped by cluster; rows correspond to features with significant differences among clusters (ANOVA test). (§) The
top 10 most significant features from the ANOVA test. Differences in the distributions of features between clusters are highlighted in the box plots next to
the heatmap, except for two features, where the number of genes in each category is shown. (B) Schematic view of the features associated with early (clus-
ter 1 and 2) and late gene silencing (cluster 3). (C) Silencing half-time distribution for each cluster. (D) The proportion of genes which undergo silencing in
mouse trophoblasts, independent or dependent of the Xist-repeat A element, is shown for each cluster, similar to Figure 5D. The numbers in each box
indicate the number of genes that fall into each category.
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Supplemental Text S5). Although potentially limited by the effi-
ciency of the transgenes (Supplemental Fig. S12), this analysis
shows that our model can to some extent be generalized even to
other chromosomes. Taken together, these results confirm that
our machine-learning model can predict X-Chromosomal gene si-
lencing based solely on epigenetic and genomic features.

Discussion

In this studywe developed amachine-learningmodel that can pre-
dict a gene’s susceptibility to Xist-mediated silencing from a com-
bination of epigenetic and genomic features. To train the model,
we measured silencing kinetics with high temporal resolution
through allele-specific PRO-seq. Compared to previous studies
(Marks et al. 2015; Borensztein et al. 2017), we assessed silencing
dynamics bymeasuring nascent transcription, therefore observing
instantaneous changes in transcription by transcriptionally en-
gaged RNAPII allowing a more direct quantification of silencing
compared to mRNA-seq, which was previously used. Moreover,
the use of an inducible system allowed us to uncouple XCI from

differentiation and to avoid the use of mutations to ensure non-
random XCI. Unlike previous studies that focused on just a few
genes and/or investigated a few selected promoter features that
are potentially linked to the XCI (Kelsey et al. 2015; Marks et al.
2015; Loda et al. 2017), we set out to identify silencing determi-
nants in an unbiasedmanner based on a large number of epigenet-
ic and genomic features. To uncover the combinatorial rules that
control silencing dynamics, wewent one step beyond classical var-
iable importance analysis in RandomForests and introduced a ran-
dom forest-guided visualization scheme. The determinants of
silencing for groups of clustered genes recapitulated previous ob-
servations but also shed light on novel players or combination
of features potentially controlling a gene’s susceptibility to Xist-
mediated inactivation.

Linear distance and 3D interactions with the Xist locus (lead-
ing to fast Xist deposition at so-called “entry sites”) are thought to
be the prime determinants of early Xist spreading (Engreitz et al.
2013). Our model found the same features to be highly predictive
of gene silencing dynamics, an association that has been described
previously (Marks et al. 2015; Borensztein et al. 2017) and suggests

A

B C D

Figure 7. Experimental validation of model predictions. (A) Half-times of six candidate genes predicted as “silenced” (top) and five candidate genes pre-
dicted as “not silenced” (bottom) were estimated experimentally through allele-specific quantification by pyrosequencing at different time points during
24 h of doxycycline treatment in TX1072 cells in three independent experiments. Individual data points (dots), the fitted exponential decay function (line),
and the estimated silencing half-times are shown. (B) Dot plot of the silencing half-times (t1/2) estimated in A. (C ) Dot plot of undifferentiated mRNA-seq
half-times for genes predicted as silenced and not silenced by our XCI/escapemodel. The gray line in B and C indicates themean, and the P-value (Wilcoxon
rank-sum test) indicates a significant difference between themean of the two distributions. (D) Fraction of genes correctly predicted as silenced by the XCI/
escape model (red lines) for six cell lines in which an inducible Xist transgene was integrated in different chromosomal locations (orange, cartoon on the
right) (Supplemental Table S5). The background distributions of silenced predictions used to estimate empirical P-values is also shown (histogram, black
dashed line represents the mean).
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that efficient Xist coating is required for fast silencing. However,
previous studies had shown thatXist RNA initially tends to spread
to gene-dense and LINE-poor regions (Engreitz et al. 2013; Simon
et al. 2013), but in our analysis, gene density was associated with
reduced silencing and LINE elements were found in proximity to
rapidly silenced genes. A similar associationwas reported previous-
ly (Chow et al. 2010; Loda et al. 2017), suggesting thatXist coating
is not the only determinant of silencing.

The Xist RNA recruits several protein complexes that mediate
gene silencing, such as SPEN, which binds directly to the repeat A
element and PRC complexes, which are indirectly recruited by the
repeat B (Wutz et al. 2002; Chu et al. 2015; Monfort et al. 2015;
Brockdorff 2017). Our model identified groups of genes associated
with each of these silencing pathways. Repeat B/PRC-associated
genes are already enriched for PRC1 and PRC2 prior to the onset
of XCI, suggesting that Polycomb premarking might promote
and even accelerate gene silencing and/or reinforceXist spreading,
as suggested by a recent study (Colognori et al. 2019). A similar en-
richment of PRC components was previously found at genes sus-
ceptible to ectopic silencing by Xist transgenes (Kelsey et al.
2015; Loda et al. 2017). Although we did not find a clear signature
at repeat A–associated silenced genes in theXCI/escapemodel, ear-
ly-silenced genes in the silencing dynamics model that are not en-
riched for PRC, are located in particularly LINE-dense regions,
suggesting that LINE elements might promote silencing of
Polycomb-independent genes.

Previous studies looking at post-XCI cells proposed a role of
CTCF in XCI (Filippova et al. 2005; Berletch et al. 2015) and found
a moderate enrichment of CTCF prior to XCI at promoters of es-
capees compared to promoters of silenced genes (Loda et al.
2017). AlthoughCTCFwas not one of the discriminating promoter
features in our XCI/escape model, we observed a significant en-
richment of CTCF signal at enhancers of not silenced X-linked
genes (Supplemental Fig. S13; Supplemental Text S6), suggesting
a potential role of CTCF in gene silencing mediated by chromatin
looping between enhancers and promoters.

Finally, our analysis identified several structural features that
appear to modulate the dynamics of silencing. A high “connectiv-
ity” of some genes, that is, how much the gene is involved in 3D
interactions with other genomic elements, is associated with faster
silencing, maybe becauseXist RNA can spread more easily to these
genes through proximity transfer.Moreover, early silencing prefer-
entially occurs at genes that are close to LADs, which generally
contain repressed genes (van Steensel and Belmont 2017), whereas
genes close to TAD boundaries tend to be silenced late.

In conclusion, we developed two Random Forest models that
can accurately predict silenced and not silenced/escape genes, but
also classes of early- versus late-silenced genes, constituting the
first chromosome-wide predictive models of gene silencing from
a very large set of features. We confirmed the predictive nature
of our models by experimental testing of model predictions. The
RandomForest approach allowed us to quantify the relative contri-
bution of several features that were previously associated with XCI
(e.g., linear distance to Xist, LINE elements, enrichment for PRC1
and PRC2, etc.) and suggested new features, which can be tested in
more detail in future studies, such as TET1, and some pluripotency
factors, such as ESRRB and SOX2, which have recently been impli-
cated in reactivation of theXChromosomeduring reprogramming
(Janiszewski et al. 2019). Additional features could be included in
the model in the future to further improve our ability to predict si-
lencing susceptibility, and a detailed experimental investigation of
the different silencing pathways elicited by Xist will facilitate the

interpretation of the features that predict silencing dynamics as
well as escape from XCI.

Methods

ES cell culture

The female TX1072 mESC line was grown in serum-containing
medium, supplemented with LIF and 2i, as previously described
(Schulz et al. 2014). Details on the cell line and culture conditions
are given in Supplemental Text S7.

PRO-seq

PRO-seq was performed as described previously with some
modifications (Mahat et al. 2016). For details about the experiment
and the allele-specific bioinformatics analysis, see Supplemental
Text S7.

mRNA-seq and pyrosequencing

RNA was isolated and converted to cDNA using standard proce-
dures. For mRNA-seq, libraries were prepared using the TruSeq
Stranded mRNA LT Sample Prep Kit (Illumina) and sequenced
and analyzed using standard procedures (Supplemental Text S7).
For pyrosequencing, an amplicon containing a SNP is amplified
by PCR from cDNA using GoTaq G2 Flexi (Promega) with 2.5
mMMgCl2 or HotStarTaq (Qiagen) for 40 cycles. The PCR product
was sequenced using the PyroMarkQ24 system (Qiagen). Assay de-
tails are given in Supplemental Table S6.

Silencing half-times

To normalize for sequencing depth, the reads mapping on the B6
genome were divided by the total number of allele-specific reads
for each gene as follows:

f tB6 = readstB6
readstB6 + readstCast

. (1)

f tB6 was averaged across replicates (0, 24 h), which showed
good replicate agreement (Supplemental Fig. S14), resulting in a
total of eight time points (t=0, 0.5, 1, 2, 4, 8, 12, 24 h). The allelic
ratio was calculated as follows:

ratiot = f tB6
f tCast

= f tB6
1− f tB6

(2)

and normalized to the uninduced control (t=0) to correct for basal
skewing (different transcriptional activity at the two alleles in the
absence of Dox) by the following:

normt = ratiot

ratio0
= f tB6

1− f tB6
× 1− f 0B6

f 0B6
. (3)

To estimate gene-specific silencing half-times, an exponential
decay function was used:

N(t) = e−kt , (4)

where k represents the silencing rate that was fitted to normt using
the nls function (stats R package) and the half-time was calcu-
lated as

half -time t1/2 = ln(2)
k

. (5)

Amaximumvalue of k=5, corresponding to a half-time of 3.5
d was set, because higher half-times cannot be reliably estimated
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from our data as a result of the limited range of time points from 0
to 24 h. The goodness of fit was evaluated via the square root of the
sum of squared residuals sqrtRSS defined as

sqrtRSS =
������������������������

∑

t
(normt − N(t))2

√

. (6)

After filtering out genes without SNPs, with fewer than 10
reads for at least one time point and strong allelic skewing
(f 0B6 , 0.2 or f 0B6 . 0.8) and sqrtRSS>1.5, we obtained reliable
half-times for 296 X-Chromosomal genes on mouse genome
mm10 (Supplemental Tables S1, S2). Those genes were mapped
to the mouse genome mm9 with the liftOver tool from the
UCSC Genome Browser (Kuhn et al. 2007).

Gene half-times from both differentiated and undifferentiat-
ed mRNA-seq time series were computed in the same way as de-
scribed above. For the undifferentiated mRNA-seq data set, we
discarded replicate B because of insufficient read coverage and
only used replicate A (Fig. 2A), which resulted in computing
half-times for 346 genes. For the differentiated mRNA-seq data
set, we averaged replicate A and B for each time point and comput-
ed half-times for 379 genes. For 233 genes, half-time could be esti-
mated from all three data sets.

Definition of model features

The epigenetic and genomic features used for the Random Forest
models are summarized in Table 1 and listed in detail in
Supplemental Table S7. In total, 138 ChIP-seq libraries and one
bisulfite sequencing experiment on undifferentiated male mESCs
(only HDAC3 was assessed in female mESCs) were collected from
various sources. After performing ChIP-seq library quality control
with the deepTools package (Ramírez et al. 2014), 58 ChIP-seq li-
braries and the bisulfite sequencing experiment were used in the
model (Supplemental Figs. S15, S16; Supplemental Table S8;
Supplemental Text S1). Epigenetic features are defined as the aver-
age ChIP-seq signal in a predefined genomic region, normalized to
the signal of a matched control experiment in the same region.
Read counts of each feature were normalized to the control with
the R package normR (Supplemental Fig. S17; Helmuth et al.
2016; Kinkley et al. 2016). Although for most features the signal
is extracted in a genomic region around the active gene TSS, for
broader features such as elongation marks H3K36me3, RNAPII
S2P, and H3K79me2, the signal was averaged over the entire gene
body (Supplemental Table S7). The active TSS for each gene was
identified based on the PRO-seq data at time point t=0 through
the dREG method, which finds regions that harbor bidirectional
transcription (Supplemental Fig. S18; Danko et al. 2015). In addi-
tion to epigenetic features, wedefined 18 genomic features, includ-
ing distance of each gene’s TSS to the Xist locus, the next TAD
border, or the next full-length LINE element; gene overlap with
LADs, LINEs, and CpG islands; and strength and number of 3D
chromatin interactions of gene promoters with other genomic ele-
ments. For details, see Supplemental Text S1.

Random Forest classification models

Two statisticalmodels were developed to distinguish (1) “silenced”
from “not silenced” genes, referred to as “XCI/escape model,” and
(2) “early”- from “late”-silenced genes, referred to as “silencing dy-
namics model.” The continuous half-time values were therefore
assigned to discrete classes in both models, according to fixed
thresholds, which were chosen such that the error rate from the
classification model (described below) would be minimized (Figs.
1G, 2G; Supplemental Table S3). Genes were defined as “silenced”
for t1/2 < 0.9, as “not silenced” for t1/2 > 1.6, as “early-silenced” for
t1/2 < 0.5, and as “late-silenced” for 0.9 < t1/2 < 1.3. The XCI/escape

model was trained on 218 genes (168 from the “silenced” and 50
from the “not silenced” class) and the silencing dynamics model
on 114 genes (74 from the “early”-silenced and 40 from the
“late”-silenced class).

The two Random Forest classification models were imple-
mented with the randomForest R package and use 77 predictor
variables (epigenetic and genomic features), which show a variable
degree of correlation between each other (Supplemental Fig. S19; R
Core Team 2009). The error rate of the models is computed based
on the out-of-bag (OOB) error, which is the mean prediction error
over all the trees of the Random Forest. Importance of each feature
is computed as “mean decrease in accuracy” (MDA) (Supplemental
Text S2). Variables with large positive values of the MDA corre-
spond to important features for the classification, whereas vari-
ables with MDA close to zero or negative correspond to noise.

Feature importance (MDA) and classification performance
(OOB error) measures were further averaged over a collection of
five hundred Random Forests to obtain stable results.

Simple feature selection was performed to improve themodel
performance by removing weaker or redundant features, which
potentially introduce noise. We retained only the top 10 features
from each class of the XCI/escapemodel and the top eight features
from each class of the silencing dynamics model, which yield the
model minimal error rate (Supplemental Text S2). For both mod-
els, the classification performance on the top features is reported
as an average of 500 Random Forests.

Given the trained XCI/escapemodel, we predicted the silenc-
ing class of all X-linked genes, which were not included in the
training set and chose few genes for experimental validation
with pyrosequencing (Supplemental Text S2).

Forest-guided clustering for model interpretation

We can extract a proximity matrix from the trained Random Forest,
which is a rough estimate of the distance between genes based on
the proportion of times the genes are found in the same leaf node
of a tree (Fig. 3C; Supplemental Text S3).

Based on this proximity matrix, genes were grouped into three
clusters with the k-medoids algorithm for both models (Reynolds
et al. 2006). Genes of the same silencing class (e.g., not silenced)
are largely expected to cluster together according to a certain com-
bination of epigenetic and genomic features. Given the nonlinear
nature of the classification problemmodeled here, we also expect,
to some extent, genes from the same silencing class to be grouped
in different clusters according to different combinations of
features.

Similar to k-means clustering, k-medoids clustering requires
setting in advance the number of clusters k (Supplemental Text
S3). The results of the k-medoids clustering are visualized for
both models as heatmaps, displaying the top 10 features that
have a significant variation across clusters according to the P-value
of an ANOVA test and few others which are also important for clas-
sification. Compared to classical Random Forest feature impor-
tance, the outcome of the forest-guided clustering enables an
alternative interpretation of the Random Forest predictions in
terms of combinatorial rules that determine the silencing state of
groups of genes.

Statistical tests

Kolmogorov-Smirnov (KS) test was performed to test differences in
silencing dynamics between A repeat–dependent and A repeat–in-
dependent genes. A Fisher’s exact test was performed to test for en-
richment of escapees in the silenced class and for A or BC repeat–
dependent genes in the clusters of bothmodels. AWilcoxon rank-
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sum test was used to test for differences in half-times between si-
lenced and not silenced genes from the pyrosequencing experi-
ment and for comparison with mRNA-seq data. An analysis of
variance (ANOVA) test was performed to find significantly differ-
ent features across clusters in both models. All statistical tests
were performed in R with the base statistical functions package.

Data access

All raw and processed sequencing data generated in this study
have been submitted to the NCBI Gene Expression Omnibus
(GEO; https://www.ncbi.nlm.nih.gov/geo/) under accession num-
ber GSE121144. The Random Forest pipeline is available as
Supplemental Code, and the scripts for all additional analysis are
on GitHub (https://github.com/marsicoLab/xist_mediated_gene_
silencing).
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